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Abstract: Multimodal data fusion is one of the current primary neuroimaging research directions
to overcome the fundamental limitations of individual modalities by exploiting complementary
information from different modalities. Electroencephalography (EEG) and functional near-
infrared spectroscopy (fNIRS) are especially compelling modalities due to their potentially
complementary features reflecting the electro-hemodynamic characteristics of neural responses.
However, the current multimodal studies lack a comprehensive systematic approach to properly
merge the complementary features from their multimodal data. Identifying a systematic approach
to properly fuse EEG-fNIRS data and exploit their complementary potential is crucial in improving
performance. This paper proposes a framework for classifying fused EEG-fNIRS data at the
feature level, relying on a mutual information-based feature selection approach with respect to
the complementarity between features. The goal is to optimize the complementarity, redundancy
and relevance between multimodal features with respect to the class labels as belonging to a
pathological condition or healthy control. Nine amyotrophic lateral sclerosis (ALS) patients
and nine controls underwent multimodal data recording during a visuo-mental task. Multiple
spectral and temporal features were extracted and fed to a feature selection algorithm followed by
a classifier, which selected the optimized subset of features through a cross-validation process.
The results demonstrated considerably improved hybrid classification performance compared to
the individual modalities and compared to conventional classification without feature selection,
suggesting a potential efficacy of our proposed framework for wider neuro-clinical applications.
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1. Introduction

Numerous mathematical tools and computational methods have been utilized to combine data
from different modalities efficiently and obtain a criterion that optimally selects the best fused
features from these different modalities. These fusion methods are especially useful in neuro-
clinical studies to support more accurate decoding of neural information, and thus, improve the
performance of relevant applications. These algorithms have shown promising applications in
various fields, including brain-computer interfaces (BCIs) [1,2], neuro-pathological diagnosis
[3,4], and neural source localization [5].

So far, many fusion frameworks have exploited the common and complementary properties of
different types of neuroimaging data, including electroencephalography (EEG) and functional
near-infrared spectroscopy (fNIRS). These modalities are both portable scalp located devices that
can be easily employed for data acquisition in multiple populations of patients with neurological
impairments. Considering the first modality, EEG captures macroscopic cortical dynamics with
relatively fine temporal resolution (∼5 msec). Although EEG classification has been widely
investigated to detect and extract underlying pathological neural signatures, outcomes remain
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poor for multiple reasons, including low signal-to-noise ratio (SNR), poor spatial resolution, and
insufficient classifiable measurements which cannot be addressed easily by existing computational
algorithms [6]. One way to overcome these drawbacks is combining EEG with other modalities in
an integrated framework that can provide a complimentary basis for the more accurate and robust
detection of neural signatures to improve classification performance. For this purpose, fNIRS
has shown promising capacity in improving classification performance [7–10] as a modality
for measuring the underlying hemodynamic properties with higher spatial resolution (∼ 1 cm)
than EEG. The integration of EEG and fNIRS provides us with two different types of neural
data associated with the same regional neural activities, each one reflecting the underlying
changes as potentially different sources of information. Exploiting the complementary features
of the two data modalities with proper fusion algorithms to achieve a higher classification
accuracy for hybrid EEG-fNIRS measures than for single modality approaches can provide a
basis for improving performance in many existing neuro-assisted applications ranging from BCI
to improving diagnostic methods for neurological impairments.

Fusion frameworks for EEG-fNIRS classification can be broadly classified into two categories
based on the level at which the combination takes place. The first category is decision-level, in
which the features are separately fed to a classifier, and the outcome is used in a feedback loop to
optimize accuracy. For example, in a motor imagery study conducted by Fazli et al. [11], three
groups of features, specifically EEG band-power, oxy-, and deoxy-hemoglobin (HbO2 and HbR
respectively) were separately classified, and then a meta classifier optimally combined the three
classifier outputs in a feedback loop based on the global peak cross-validation accuracy of each
classifier. Putze et al. [12] used a similar framework to classify auditory and visual perception
using hybrid EEG-fNIRS spectral and temporal features. Both studies achieved an average
of 5% improved classification accuracy over single modality classification. In another study
[13], the authors used decision level fusion to combine the outputs of two local support vector
machine (SVM) classifiers, one for EEG signals and the other for fNIRS signals in which each
classifier was calibrated based on the optimal operating points of the EEG and fNIRS receiver
operating characteristic (ROC) curves. At the end, both outputs were fed to a global classifier,
which improved classification accuracy by 7.76% compared to single modal approach. A similar
study for classifying mental work achieved 6% improvement compared to single modal data
[14]. Another decision-level hybrid classification criterion is the fuzzy fusion-based approach,
as was done in [15] to integrate the temporal and spectral features of EEG for motor imagery
classification. After employing traditional classification methods, the authors adopted Choquet
and Sugeno integrals to consider possible interactions between the obtained outputs from the
different classifiers by fusing their posterior probabilities. They achieved ∼7% improvement
compared to conventional classifiers including linear discriminant analysis (LDA).

The second category is feature-level fusion in which features are concatenated, transformed, or
optimally selected before training the classifier. Work on the simple concatenation of EEG-fNIRS
features has shown a modest improvement compared to that obtained with a single modality,
which is likely caused by the lack of comprehensive computational approaches for a proper
feature integration that exploit the complementarity between each modality’s unique properties
as a preferred alternative over feature concatenation [6]. For example, in another study conducted
by Buccino et al. [16], EEG-fNIRS features were integrated through concatenation without any
feature fusion strategy. In this study, the authors reported that the feature set was small, had
no imposed computational load on the classification, and reached a 2% accuracy improvement
compared to features from a single modality. In a study by Nguyen et al. [17], driver drowsiness
during long-term simulated driving classified using concatenated EEG-fNIRS features yielded
an average 5.5% accuracy improvement using combined classification compared with single
modal features. Another modest improvement of 1% using hybrid classification was achieved by
concatenating EEG and fNIRS features for distinguishing Parkinson’s disease [18]. Feature-level
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EEG-fNIRS fusion has also been done by projecting the original feature set to a new feature space
to provide better separability than the original feature set. These projection methods are known
as feature extraction methods, and their main disadvantage is that the newly created feature space
is difficult to interpret and may not have a clear physical meaning [19]. In a study conducted by
Saadati et al. [20], the authors extracted temporal and spectral features from EEG-fNIRS data and
then used a convolutional neural network (CNN) to pass the features through different layers of
the network and change the dimensions in a deep learning process for classifying mental workload
from EEG-fNIRS data, which improved classification by 7%. Other transformation approaches
have used a specific criterion for projecting the feature set into a new space. For example, in
a study of mental stress assessment [21], the temporal properties of EEG have been combined
with the spatial properties of fNIRS by transforming their signals to a mixed model, respectively
using temporal and spatial independent component analysis (ICA), achieving a 3.4% accuracy
improvement. In another study [22], the authors used a joint sparse canonical correlation analysis
(CCA) to jointly estimate multiple pairs of canonical vectors to fuse EEG-fNIRS features and
then fed these features to a SVM classifier, which significantly improved the hybrid classification
accuracy by 5%. In a similar study on mental stress assessment [23], a CCA was used, to project
two different feature sets into a space with maximum correlation across two sets. The authors
reported that by using this criterion, the redundant information has been reduced, and they
obtained a 7.9% accuracy improvement. As the last category of feature-level fusion frameworks,
feature selection algorithms have been used to optimally select a subset of features from the
original combined feature set based on a criterion that maximizes classification performance.
Depending on whether the classifier is included in the selection process, feature selection methods
can be grouped into wrapper and filter methods [24]. While wrapper methods generally consider
classification performance as the feature selection criterion, filter methods select an optimized
feature set independent of the classification algorithm. Thus, in filter methods, the biases of the
feature selection procedure do not interfere with the learning algorithm–this results in improved
generalization capability for the classifier. One example of feature selection is the method used
by Lin et al. [25], who conducted correlation analysis as the selection criterion between EEG
and fNIRS channels (features in their study) and selected the most correlated channels, which
yielded a 9% sensitivity improvement compared to single modalities. In the use of conventional
classification algorithms, fused feature selection is a fundamental difficulty given a large number
of possible features and the often small amount of available data. Furthermore, as the number
of samples in real-world EEG-fNIRS recordings is relatively small, avoiding underfitting or
overfitting is a primary challenge [20]. The existence of redundant information in the original
feature space can also hinder classification performance [26] since a system that memorizes
training data involving redundancy can achieve perfect training performance while completely
failing to generalize to new data.

The mutual information criterion is a powerful mathematical tool for feature selection, which
can minimize the redundancy between features (i.e. the joint entropy of features subtracted from
the individual entropies of the features). Yin et al. [26] used this criterion to decode the force
and speed of hand clenching. In this study, the authors used band-power, amplitude, phase, and
frequency to construct time-phase-frequency EEG features, and the differences between HbO2
and HbR were extracted as fNIRS features. They used a feature optimization method based
on joint mutual information to remove redundant information that may reduce classification
accuracy. This combination of EEG-fNIRS features resulted in improved performance (up to a
5% increase). In addition to minimizing redundancy, maximizing the relevance of a feature set
to the discrete output of the classifier can significantly increase classification performance [27].
Another important contributing factor to improving classification performance is maximizing
the complementarity between features obtained from multimodal data. This property has been
defined as a combination of features that can return more information on the output class than the
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sum of the information returned by each of the features taken individually [27]. This advantage has
special importance while fusing two different modalities with unique complementary properties,
which can be efficiently exploited to improve classification performance. The mutual information
criterion has also been adopted for combining other modalities in the literature. The authors
in [28] minimized the conditional entropy between EEG and magnetoencephalography (MEG)
features to reduce the degree of redundancy or similarity between the two signals for optimal
estimation of the parameters to model localized sources. In another study [29], the authors used
EEG and functional magnetic resonance imaging (fMRI) data in a hybrid source activation model
by minimizing the mutual information to maximize the independence for joint ICA analysis. In
another study [30], the authors used EEG and electrocardiography (ECG) data to classify mental
workload. In this study, the authors first extracted features from both modalities and then used a
criterion called co-information to maximize the mutual information between the output labels
and the integrated feature subset. The authors reported that their proposed fusion method could
increase the classification accuracy indicating their multi-modal fusion approach is promising to
identify mental workload.

To date, EEG-fNIRS multimodal approaches have shown a considerable capacity to improve
classification performance by measuring two different brain functions. However, they suffer
from a lack of strong computational methods to systematically and optimally integrate the
features. Computational integration methods should be developed that consider the differential
characteristics of features from multimodal EEG-fNIRS signals. It is anticipated that efforts
towards optimizing multimodal integration of EEG and fNIRS can make substantial advancement
to the existing brain measurement packages with improved performance compared to EEG or
fNIRS modalities alone.

In this paper, a mutual information-based feature selection algorithm was adopted to propose a
classification framework for multimodal EEG-fNIRS data. This study is the first that systematically
exploits the complementarity aspect of such multimodal fused features through a feature selection
algorithm that quantifies the complementarity between features and selects the optimal fused
subset towards improving the classification performance. In this algorithm, the optimal features
from a fused set of EEG-fNIRS features were determined with respect to minimized redundancy
between features, maximized relevance, and maximized complementarity between features and
class labels. EEG and fNIRS data were recorded from healthy participants and participants
with ALS during a visuo-mental paradigm and were used to distinguish between the two
aforementioned groups as a two-class problem. Features were first extracted from each modality
and then the optimized subset of features was selected from the original combined set of EEG and
fNIRS features through the aforementioned mutual information-based algorithm. This process
was repeated for each modality (i.e., EEG and fNIRS) separately to evaluate the classification
performance’s improvement due to the integration of features compared to those obtained from
each single modality. Finally, the selected optimal feature sets from each individual modality and
from the two modalities combined were fed into a support vector machine (SVM) classifier in
which the hyper-parameter was the adequate number of features that was chosen according to the
best classification results.

2. Materials and methods

2.1. Participants

A total of 18 subjects were recruited and assigned to two groups: Nine individuals with ALS (ALS:
7 males, average age 56.8 years old) with ALS revised Functional Rating Scale (ALSFRS-R)
scores of 0, 4, 4, 23, 22, 39, 41, 33, 26, respectively for subjects 1 to 9 (mean: 21.3± 15.5) on a
48-point scale and nine age-matched healthy controls (HC: 4 males, average age 60.7 years old).
All the protocols in this study were approved by the Institutional Review Board (IRB) of the
University of Rhode Island (URI) and written informed consent was provided directly by each
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subject or by each patient’s caregiver. Age-matched control subjects had no reported history
of visual, mental, or substance-related disorders that could potentially affect the results or their
performance during data recording.

2.2. Experimental protocol

Subjects participated in two sessions, each consisting of one run with 14 trials. The participants
were asked to perform a visuo-mental paradigm based on the conventional visual oddball
paradigm followed by a mathematical task, as fully described in our previous work [31] and in
the supplementary materials (Fig. S1 in Supplement 1). The dual nature of our visuo-mental
paradigm provokes both electrical and hemodynamic responses associated with visual oddball
stimulations and mental arithmetic operations.

2.3. Data acquisition

Both signals were recorded simultaneously using a single cap mounted with both EEG electrodes
and fNIRS optodes. fNIRS data were recorded using NIRScout (NIRx Inc.) with two NIR lights
(760 nm and 850 nm wavelengths) and digitized at 7.81 Hz. EEG data were recorded using the
g.USBamp amplifier (g.tec Medical Tech., Schiedlberg, Austria) and digitized at 256 Hz. Figure
1 shows a schematic head montage model of the fNIRS-EEG sensors. EEG was recorded from
16 channels: AF3*, AF4*, F1*, Fz*, F2*, T7, Cz, T8, P7, P3, Pz, P4, P8, PO7, PO8, and Oz
covering all of the prefrontal, frontal, central, parietal, temporal and occipital areas, which are
investigated commonly in whole head surface ALS studies [32–34] (note: AF3*, AF4*, F1*,
Fz*, and F2* respectively, were the nearest electrode placements to fNIRS-occupied AF3, AF4,
F1, Fz, and F2 according to the 128-channel montage). As depicted in Fig. 1, we used eight
emitters and seven detectors to create a total of 16 fNIRS channels. Most of the fNIRS channels
were mounted on the frontal and prefrontal areas that cover the regions in which extra-motor
alterations and cognitive impairments are most often reported in people with ALS [32], along
with two parietal channels. Following the modified combinatorial nomenclature (MCN) montage,
the emitters were located at Fpz, AF3, AF4, F3, Fz, F4, CP5, and CP6, while the detectors were
placed at Fp1, Fp2, AFz, F1, F2, P5, and P6. Each fNIRS channel used an emitter-detector
pair with the optimal 3-cm distance recommended by Yamamoto et al. [35]. This multimodal
montage follows standards closely and is convenient to mount, making it an appropriate candidate
for future multimodal applications. All experimental protocols and data acquisition for EEG and
fNIRS were controlled using BCI2000 and NIRStar software.

2.4. Data analysis

EEG data were band-pass filtered at 0.3–35 Hz and detrended to remove baseline drift and out
of band artifacts. Then, the data were checked for extreme values and outliers. Participants
from both the ALS and HC groups had the same total number of 9 × 2 × 14 = 252 (number
of participants × number of runs × number of trials) observation points (i.e., samples) for
both modalities (i.e., EEG and fNIRS). For EEG spectral features, the data were decomposed
into spectrograms using a set of 30 complex Morlet wavelets ranging from 1–30 Hz and 3–10
cycles. The baseline-corrected spectrograms were obtained by dividing each frequency bin
and time point by the baseline (−3 to −1 sec pre-stimulus window) average and calculating
the percentage changes. The spectrograms from [0–5 sec] post-stimulus were then averaged
across four traditional frequency bands: delta (1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), and
beta (13–30 Hz) to generate four different features. In total, there were 16 × 4 = 64 (channels ×
frequency bands) spectral features extracted from EEG data. For EEG temporal features, we
used event-related potentials (ERPs), the averaged EEG waveforms of time-locked to stimulus
or response events, in which the data were segmented to [0–800 ms] post-stimulus and the
ERPs were then obtained. Five ERP features corresponding to peak amplitudes of P200, P300,
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Fig. 1. Schematic head model of the fNIRS-EEG sensors.

P600, N200, and N400 components were then extracted in which the P200, P300, and P600
components were defined as the maximum peaks between 100–250, 250–400, and 650–800 ms
post-stimulus, respectively, while the N200 and N400 components were defined as the minimum
peaks between 150–280 and 360–560 ms post-stimulus, respectively. Following our previous
work [31], these features have previously reflected significant differences between ALS patients
and healthy controls, and thus have been considered as proper features with high separability
for the classification procedure. In total 16 × 5 = 80 (channels × ERP components) temporal
features were extracted from the EEG data.

fNIRS data were band-pass filtered at 0.01–0.2 Hz to mitigate physiological noises caused by
respiratory and cardiac activities [36]. Then, oxy-hemoglobin (HbO2) concentration changes
were extracted from the raw optical intensity data as features using the modified Beer-Lambert
Law [37]. The average baseline (−2 to −1 sec pre-stimulus window) was then subtracted from
the following post-stimulus signal for each epoch, and then, the peak and the area under the curve
(AUC) of HbO2 were extracted using [0–6 sec] post-stimulus window for each of the 16 fNIRS
channels, providing a total of 16 × 2 = 32 (channels × feature types) features extracted from
fNIRS data.

All features were then normalized by subtracting the mean and dividing by the standard
deviation of each feature vector (z-score). Outliers were clipped by setting all the values that
were more than three feature standard deviations from the feature mean to only three standard
deviations from the mean [38]. This was done to eliminate any degradational effect of the feature
value range on the feature selection process. All the EEG and fNIRS vectors of features were
then concatenated and the whole dataset was shuffled and partitioned into two main (equal size)
folds with five sub-folds in each main fold for cross-validation testing to optimize the features.

To improve the discriminative performance of our classification procedure, we used an
optimization framework following that proposed by Meyer et al. [27]. This framework consists
of three steps: 1) maximizing the relevance of a selected feature set to the class labels, 2)
minimizing the redundancy between features within a selected subset of the original features,
and 3) maximizing the complementarity between features with respect to the class labels. The
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optimization formulation in which the features were selected is defined in the equation below.

XOpt
S = arg max

Xs⊆X

⎧⎪⎪⎨⎪⎪⎩
∑︂

Xi∈XS

∑︂
Xj ∈XS

I(Xi,j; Y)
⎫⎪⎪⎬⎪⎪⎭ (1)

In this formulation, Y represents the vector of output labels (HC= 1, ALS=−1), X, XS and
Xi,j represent the original set of n features [n is the number of features in Eq. (2)], a subset of
original features, and a subset of original features consisting of two single features (Xi and Xj)
respectively defined in the equations below. The term under optimization inside the objective
function represents the mutual information I(.) between Xi,j and Y. The term “arg max” states
that the objective function is supposed to be maximized by searching for the XS ⊆ X to find the
optimized feature set (i.e., XOpt

S ).

X = {Xi : i ∈ A = {1, . . . , n}} (2)

XS = {Xi : i ∈ S ⊆ A} (3)

Xi,j = {Xi, Xj} (4)

Equation (1) is an optimization formulation for finding a subset of features that can maximize
the joint mutual information of class labels with each pair of features inside the selected subset
of original features. The joint mutual information of two random variables with another variable
can be defined by the equation below.

I(Xi,j; Y) = I(Xi; Y) + I(Xj; Y) − C(Xi; Xj; Y) (5)

The first two terms in this equation are the mutual information between single features and
the class labels. These terms represent the relevance of each feature to the class labels, which
means maximizing the term in Eq. (1) will optimize the relevance of each feature alone. The last
term, denoted as C(.) represents the interaction among the whole set of both features and the
class labels. The lower the interaction term, the less redundant the variables are, and the higher
their complementarity is (if the interaction term is negative). The interaction term in Eq. (5)
for three variables can be obtained using the entropies and joint entropies of the set of variables
according to the equation below.

C(Xi; Xj; Y) = H(Xi) + H(Xj) + H(Y)

−H(Xi, Xj) − H(Xi, Y) − H(Xj, Y) + H(Xi, Xj, Y)
(6)

The entropy of variable(s) is denoted with H(.) in this formulation. If the interaction term
becomes negative, it can be inferred from Eq. (5) that I(Xi,j; Y)>I(Xi; Y) + I(Xj; Y). Therefore,
the gain resulting from using the joint mutual information of the two features will be more than
the sum of the individual features’ information. This property is caused by the existence of
complementarity between two features.

As finding the optimized subset of features according to Eq. (1) is a non-deterministic
polynomial-time hardness (NP-hard) problem [39], a semi-optimized strategy based on forward
selection search was used to solve this equation [40]. This approach consists of updating a set
of selected features Xs with the feature Xi from the set of remaining features that have not been
selected yet. This new feature has been paired with all the members of the pre-selected set of
features and should maximize the summation of joint mutual information between all paired sets
of features and class labels. In other words, instead of attempting to find an optimized solution



Research Article Vol. 12, No. 3 / 1 March 2021 / Biomedical Optics Express 1642

for Eq. (1), a semi-optimized solution will be substituted based on the equation below using a
procedural updating approach.

XOpt
S = arg max

Xs⊆X
Xi∈X−S

⎧⎪⎪⎨⎪⎪⎩
∑︂

Xj ∈XS

I(Xi,j; Y)
⎫⎪⎪⎬⎪⎪⎭ (7)

In this formulation, X−S represents the whole set of original features with those in XS removed.
This can be defined as the equation below.

X−S = {Xi : i ∈ A − S} (8)

This strategy starts with an empty set of variables and progressively updates the solution by
adding the variable that maximizes the objective function in Eq. (7) until an adequate number of
features is reached. The pseudo-code for the sequential feature selection algorithm is shown in
Fig. 2.

Fig. 2. Sequential feature selection pseudo-code.

A support vector machine (SVM) classifier, which has been widely used for brain signal
classification was used to classify data points corresponding to two classes of HC and ALS
denoted as Y ∈ {HC = 1, ALS = −1}. A non-linear polynomial kernel was used for SVM in
this study to maximize discrimination between data points, as it allows complex separation
surfaces requiring optimization of a reduced number of hyper-parameters. In order to reduce the
bias associated with training and test data and to improve the generalizability of the proposed
framework, a cross-validation technique was employed in which the generalization error was
estimated based on resampling. A 2-fold cross-validation strategy was then used to partition
each dataset into separate datasets for feature selection and validation as follows: the dataset
was first split into two equal parts. Each half-dataset was separately used as training data to
conduct the learning process and optimize the parameters. The results were then applied on
the other half (i.e., testing dataset) to produce the classification accuracy for that corresponding
fold. The final accuracy was the average of both folds’ accuracies. Within the inner level of
the aforementioned cross-validation, each half-dataset was split into five sub-fold to select and
validate the best number of features (i.e., our only hyperparameter under optimization at the
classification level). In a leave-one-out strategy for the aforementioned 5-fold cross-validation,
the feature selection and classifier training was done for each 80% of the half-dataset and was
repeated five times to cover all the sub-folds. Each training process was done for a number of
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optimally selected features ranging from 1 to 32 (32 is the minimum number of features per
modality). The classification accuracies of the five validation sets were then averaged for each
number of features, and the best number of features was then selected. This whole process was
done in a similar way for each single modality and for the multimodal data. To evaluate the
classifier, three metrics of accuracy, sensitivity, and specificity were used as follows:

Accuracy =
TP + TN

TP + FN + TN + FP
(9)

Sensitivity =
TP

TP + FN
(10)

Specificity =
TN

TN + FP
(11)

where TP denotes the correct classifications of positive cases, TN denotes the correct classifications
of negative cases, FP denotes the incorrect classifications of negative cases into class positive,
and FN denotes the incorrect classifications of positive cases into class negative.

3. Results

The classification accuracy of the validation dataset for different numbers of selected features
using the three modality options (i.e., EEG, fNIRS, EEG+ fNIRS) are shown in Fig. 3. The

Fig. 3. Classification accuracy of single and hybrid modalities for variable sizes of the
selected optimal feature subset (averaged across sub-folds of the validation dataset for fold 1
(top) and fold 2 (bottom)).
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averaged accuracy across the five validation sub-folds of the first main fold (fold 1) is shown in
the top plot, and the bottom plot shows the averaged accuracy across the five validation sub-folds
of the second main fold (fold 2). In both plots, at first, the curve (classification accuracy) ascends
as the size of the optimally selected feature subset increases. It then remains around the range of
maximum accuracy after increasing the number of features, reaches its maximum classification
accuracy at a certain point, and finally descends. In general, the hybrid EEG-fNIRS modality
performs considerably better than other single modalities in terms of the classification accuracy.
In the first fold, the optimal number of features with the maximum accuracies for different
modalities were: EEG+ fNIRS: 87.32% accuracy with 24 features, EEG: 76.71% accuracy with
23 features, and fNIRS: 60.19% accuracy with 26 features. In the second fold, the maximum
accuracies for different modalities were: EEG+ fNIRS: 87.51% accuracy with 22 features, EEG:
76.39% accuracy with 19 features, and fNIRS: 62.64% accuracy with 25 features.

Figure 4. shows the relative portions of included features from each feature category/subcategory
when averaged over optimal selected feature sets from all sub-folds. This figure highlights the
relative discriminatory importance of each feature in the final classification procedure. As it is
seen, EEG spectral features were the most selected features with 49% presence, followed by
fNIRS features with 27% and EEG temporal features with 24% presence. The most selected three
feature types were beta-band power with 22% presence, theta-band power with 18% presence,
and P300 peak with 16% presence.

Fig. 4. Relative portions of included features from each feature category/subcategory
averaged over optimal selected feature sets from all sub-folds.

Figure 5. shows classification performance characteristics based on the optimal selected subset
of features which was obtained from sub-folds for single and hybrid modalities, averaged across
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both test folds. The hybrid classification achieved the best test accuracy of 85.38%, outperforming
EEG with its best accuracy of 73.23%, and fNIRS with its best accuracy of 61.56%.

Fig. 5. Classification performance characteristics for single and hybrid modalities.

Figure 6 shows the performance characteristics of the hybrid classification for the optimally
selected set of features compared to hybrid classification using all features without any feature
selection procedure. The feature selection procedure improved accuracy by 16.67% over the test
set.
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Fig. 6. Classification performance characteristics for the selected optimal feature subset
and the original set of features without any feature selection procedure.

4. Discussion

In this paper, we used an information theory-based method to optimize feature selection and
thereby classify between a healthy group and a pathological one, people with ALS in this case,
during a visuo-mental task using multimodal EEG and fNIRS data. The proposed technique
takes the first steps to systematically exploit the complementarity aspect of the fused features
extracted from electrical and hemodynamic neural activities through a feature selection algorithm
that quantifies the complementarity between features and selects the optimal fused subset to
improve classification performance. Although the feature selection algorithm was adopted from
“Meyer et al. [27]” in which the authors used the algorithm for a single-modality dataset, to
the best of our knowledge, it has not been applied to any hybrid dual modality dataset in which
both modalities have complementary information. Considering complementary information in
multimodal data can make a remarkable increase in the classification performance compared
to the simple concatenation of the features if only certain features from each modality that can
increase the complementarity function are selected for the classification. Thus, it can be inferred
that applying this algorithm to a dual modality dataset can exploit the full potential of such an
algorithm which was presented in our results. Our results showed that when an integrated set of
features from both modalities was used, classification performance was considerably improved
compared to when EEG or fNIRS alone was used. Moreover, classification performance was
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substantially improved for the integrated subset of optimally selected features compared to when
no feature selection was done.

Our overall classification results revealed that considerable improvements in all three perfor-
mance metrics are achievable with the proposed fusion approach. This supports our central
hypothesis that the systematic selection of fused complementary EEG and fNIRS features of
can improve classification performance. The fused feature selection model enabled us to take
advantage of the strengths of both modalities in unified analytics. Although it is impossible
to make fair quantitative comparisons with other similar studies as the algorithms were run
on different datasets the improvement in hybrid classification accuracy achieved in this study
relative to single modality accuracies was competitive with previous EEG and fNIRS fusion
studies, including those reported by Fazli et al. [11] and Putze et al. [12]. Our improved
fusion results may be due to the level of fusion being adopted, as both of their studies applied
fusion at the decision level, i.e., using a meta classifier to integrate the outputs from one EEG
classifier and one fNIRS classifier. Indeed, the cross-modality inconsistencies which negatively
affect the efficiency of modality fusions [41] cannot be avoided in decision level fusions, while
such inconsistencies between modalities and their features are removed by the feature selection
algorithm used in our study. Moreover, it is likely that the outputs from the EEG classifier and
fNIRS classifier in these studies are highly correlated with less complementary information, and
thus a systematic fusion of the features to properly maximize the complementary benefits from
both modalities has been lacking. In contrast to studies done by Fazli et al. [11] and Putze et
al. [12], Yin et al. [26] considered the feature level fusion of bimodal EEG and fNIRS and
were able to improve the decoding of motor imagery tasks using a feature selection algorithm
based on removing redundancy between the integrated EEG and fNIRS features. However, Yin
et al. achieved a modest improvement, which may be due to not systematically exploiting the
potential of complementarity and focusing only on removing redundancy between their hybrid
modalities in their feature selection method, although the authors mentioned that EEG and fNIRS
complement each other in presenting cortex activation.

The technique used for feature selection in our study selects an optimal subset of features that
have maximum pairwise mutual information with the specified classes of interest (two classes in
our case). Although the most complete method would consider all possible feature subsets, even
with a small number of features, this procedure is computationally impossible and cannot be used
in practice [42]. Given the fact that most feature sets used to represent EEG and fNIRS signals
are sets of different types of features with redundancies and complementarities, this technique
considers a trade-off between computational cost and the number of chosen features. This
contrasts with other techniques that select features individually without considering interactions
between features. The classification accuracy using features obtained by applying our technique
outperforms those obtained by applying individual feature selection methods when applied to EEG
and fNIRS signals. Moreover, mutual information measures non-linear dependencies between a
set of random variables, taking into account higher-order statistical structures existing in the data,
as opposed to linear and second-order statistical measures such as correlation and covariance.
This makes mutual information-based techniques especially beneficial for a combination of
features from different modalities that are likely to have non-linear relationships with each other.

This study considered complementarities between features only up to order two to avoid the
additional computational complexity required by higher orders of feature fusion. Future work
might consider higher levels of feature fusion with more complexity, requiring greedy search
algorithms but potentially providing more advanced solutions. The small sample size and the
heterogeneous characteristics of our patient group was another limitation of this study. If a
larger number of patients are recruited in future studies, it will be possible to classify them into
subgroups based on the onset of clinical symptoms and cognitive deficits to better discriminate
between different patterns rather than considering putative patterns of altered brain functions for
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all ALS patients. In addition, we did not analyze differences in gender and education, which might
affect the obtained neuro-markers measures. Future research with larger patient samples should
be conducted to further consider demographic information in smaller sub-groups. Applying the
proposed framework in this study to other datasets of integrated EEG and fNIRS in future work
will further validate the efficiency of the adopted feature selection algorithm for neuro-clinical
studies. Furthermore, in the future, applying other state of the art algorithms that are designed
for dual-modality data classification on the same dataset will provide a more robust ground to
make fair quantitative comparisons between the proposed framework and other approaches.

5. Conclusion

Overall, in this study, we adopted a mutual information-based feature selection algorithm to
propose a classification framework for hybrid EEG-fNIRS data which was used to classify between
a healthy and a pathological group, patients with ALS in this application, during a visuo-mental
task. The optimized process of selecting features to increase classification performance was based
on exploring three properties of the fused features, including decreasing redundancy, increasing
relevance and increasing complementarity. The multimodal results revealed a considerable
improvement of classification performance characteristics, including 16% accuracy improvement
over hybrid classification with no feature selection, 12% accuracy improvement over single modal
classification using EEG, and 23% accuracy improvement over single modal classification using
fNIRS. These results support the idea of using complementary features from fused EEG-fNIRS
in neuro-clinical studies for optimized decoding of neural information, and thus, improve the
performance of relevant applications, including BCI and neuro-pathological diagnosis.
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